June 15, 1942

GROUP NO. 1 REVISION SHEETS CIVIL AERONAUTICS MANUAL 05-GLIDER AIRWORTHINESS (Edition of June 1, 1940)

- 1. Attached hereto are revision sheets numbers 1-54, inclusive, which cover all technical amendments that have been made to date to the June 1, 1940 Edition (proposed) of Civil Aeronautics Manual 05, Glider Airworthiness. These sheets should be entered in your copy of CAM 05 opposite the page affected.
- 2. For your information, there is listed on the back of this sheet the subjects of all currently effective revision sheets to CAM 05 (proposed).
- 3. After the revision sheets have been inserted, a record of entry should be made as indicated below, and this sheet then entered preceding page (b) of CAM 05.

Entered by Date

(a-1)

CIVIL AERONAUTICS MANUAL 05-GLIDER AIR ORTHINESS (Edition of June 1, 1940)

認識

50 Car

ĵ.

223

LIST OF REVISION SHEETS

Sheet No.	Affecting	Subject	Affected
		Table of Contents	 (Ъ)
2	05.060	Change, Repair or Alteration	.0-18
3	05.123-C	Computation of Additional	
	a fa l'att	Characteristics	.1-9
- 16 4 - 12 en	05.211	Design Airspeeds	.2-1
5	05.2130	Basic Flight Envelope	.2-2
5	05.2132		.2-5
	118 - C- C	Simple Basic Finght Envelope	•4***
4	No. 2-3	Rest Strate Fuserobe (Comparent	.27
8	05.2134	Basic Flight Envelope (Commitati	ons).2-8
9	05.2134	Basic Flight Envelope	.2-9
9	Fig 2-4	Corrected Moment Coefficient	.2-10
10	05.2140	Internally Braced Wings	,2-11
11	05.2150	Unsymmetrical Flight Loads	.2-12
12	05.217-4	Span Distribution	.2-14
- 121	05.2160	Gust at Reduced Weight	.2-16
13 118.	· 2-0, · 2-7	Span Districution	2-16
14	05.217-03	Determination of Resultant dir	** -10
	~J.~	Forces	.2-19
16	05.2188-3	Balancing the Glider	,2-25
17	05.244	Head-on Landing	,2-35
18	Mg2-16	Launching and Towing Loads	.2-41
19	Fig3-6	D-Nose Spar Analysia	-3-10
20	05.3213-B	Determination of Allowble	
A1	02 20/3	Stresses and Hargins of Sale	5-29 3-29
29	05, 3241	Stranged_skin Time Tutaleds	2.26
23	05.3/2	Operation Test of Toring Release	
		Machanian	3-29
24	05.34302	Losding Schedule	.3-31
25	05.34310	Rib Tests	.3-36
25	Tables .3-I	ν,	
	·.3-V	Rib Load Points	.3-36
26	C5.34311	Wing Toraion Test	.3-37
27	05.3434	Towing and Launching Loads	
20	05.350	Ting Tornion Tests	1.2-24
20	Table . J-VT	H H H	2_12
29	05.351	Vibration Tests	3-51
30	Fig. 3-9	Flot of Results of Torsion Test	3-54
30	Table .3-VI	I Flutter Control Data	.3-55
31	05.351	Vibration Tests	.3-56
31	Fig3-10	Vibration Modes and Vibration	
		Location	.3-57
34	71- 2-11	"Vioration Tests	.3-58
34	F18	of Phase Relationship	2.50
33	05. 351	Vibration Tests	3-60
34	05.4000	Cables and mires. Aluminum	••• •••
		Alloys	.1-2
35	05.4001	Splices, glued Joints	
36	05.4001	Metal Forming	.4-7
- 36	05.4001	" " Wolding	,4-8
37	05.4001	Covering and Doping	.4-10
38	05.4020	Bolts, Pins and Screws	.4-15
39	05.4100	Torsional Stillness Built-up Spars	1.22
20	05.4111	The second s	1.21
49	05.4120	Struts	.4-25
41	05.434	GARLOS	4-60
46	05.4010	FLUD dist rassinger Compertment	- 4 -65
- 42	v7.405v	transa monocoine trasteles	-4-7V 2-51
1.4	05.48	Treiler Design and Related	• ••
	1997 - 1997 - 199 7 - 1997 -	Considerations	1054
45	05.713	Airspeed Indicator Install.	
		Calibration	.7-5
46-54	Appendix I	A Simple Approximate Method of	
incl.	네 문문 사람	Cotaining the Spanwise Distribu	
		TION OI LIT ON WINGS	I-1 to I-17 incl.

(8-2)

Sec. 05.0 General 05.00 05.01 Classification of gliders 05.02 05.03 Technical data required 05.04 05.05 05.06 Change, repair or alteration of certificated gliders 05.1 Definitions Structural loading conditions 05.2 05.20 05.21 05.22 Control surface load 05.23 Control system loads 05.24 Landing gear loads 05.25 Launching and towing loads 05.3 05.30 05.31 Determination of loadings 05.32 Structural analyses 05.33 Combined analysis and tests 05.34 Load tests 05.35 Flutter prevention tests 05.4 Vaterials and workmanship. 05.40 05.41 Detail design of wings 05.42 Detail design of control surfaces 05.43 Control systems 05.44 05.45 Landing gears 05.46 Detail design of fuselages 05.47 Tow cable release mechanisms 05.48 Trailer design and related considerations 05.5 05.6 05.7 05.70 Flight requirements 05.71 Flight tests 05.72 05.73 05.8 05.9 05.90 Standard weights 05.91 Leveling means Appendix I A simple approximate method of obtaining the spanwise distribution of lift on wings.

Revision to Page (b)

05.060 CHANGE, REPAIR OR ALTERATION OF CERTIFICATED GLIDERS.

This matter is covered by CAM 18.

Revise 05.123-C, a to read as follows:

. j

5-23020

a. The normal force coefficient C, can be determined from Eq. 5, CAN 05.1C. The steps involved are shown as items 1 through 8 of Table .1-I.

4.

Revision to page .1-9

05.211 DESIGN AIRSPEEDS

5-23020

1. The values of the design airspeeds specified in CAR Table 05-2 are minimum values. In certain cases it may be desirable to use larger values; e.g., utility type gliders designed under Class III (see CAM 05.01) or high performance type gliders designed under Class II. (See CAM 05.70j regarding the possibility of accidentally exceeding the placard speed.) In order to provide for a high auto-winch tow placard speed, it may be advantageous to use a higher design gliding speed.

2. The k values specified in CAR Table 05-2 have been determined on the basis of studies of the "cleanness" of current gliders. The values of k for Class I gliders have been set approximately 11% higher than the values of k for Class II gliders since blind flying in Class I gliders is permitted and higher speeds are apt to be encountered in recovery from inadvertent attitudes (which may be obtained in blind flying) than in normal gliding operations under good conditions. Since these constants have been established on a simplified basis it is possible that. they may lead to irrational values of V when applied to particular cases. In any case it will be unnecessary to design Class I gliders to a Vg greater then .4 times the terminal valocity or to design Class II gliders to a V greater than .36 times the terminal velocity. In cases when the value of V_g is based on terminal velocity, in accordance with the above, calculations substantiating the value of terminal velocity should be submitted.

05.2130 BASIC FLIGHT ENVELOPE

1. In so far as CAR 05.2130 is concerned, the basic flight envelope or V-n diagram is a locus of points representing the limit wing load factors and the corresponding velocities for the design criteria specified in CAR 05.2131 through 05.2133.

2. A sample basic flight envelope is shown in Figure .2-2. This envelope is contructed for a Class I sailplane of very clean design, having a full cantilever wing. The basic design features are as follows:

- $W/_{S} = 8 = 3.5$ lbs. per sq. foot.
- R (Aspect ratio) = 12
- m (corrected to R of 12) = 4.8 C_L per radian e (weight of wing) = 1.5 lbs. per sq. foot.

In accordance with CAR 05 Table 05-2, a value of k = 61should be used so that the minimum design gliding speed which could be used would be V_{gmin} 61 V_{S} = 114 mph. The corresponding placard "Never exceed" speed would be .9 x 114 = 103 mph. In this particular case, however, it is assumed by the designer that a somewhat higher placard "never exceed" speed is desirable so a design V_g of 125 mph is selected (corresponding placard "never exceed" speed is .9 x 125 = 112 mph). The construction of the basic flight envelope for this sailplane will be outlined in the following sections.

05.2131

a. Plot the following equation to obtain line 1 of the positive portion of the V-n diagram. (See Figure .2-2)

 $n = \frac{v^2}{196s} \text{ where } n = \frac{v^2}{196s} \text{ maximum possible positive limit wing load factor at the speed, V (mph). This is based on a C_{L max}. (dynamic) of 2.0.$

b. Draw a vertical line through the velocity corresponding to V_g (line 2 of Figure .2-2).

Revision to Page .2-2

05.2131 c. Plot the following equation to obtain line 3 of the negative portion of the V-n diagram (See Figure .2-2)

	where n = maximum possible negative	
DATE	unit wing load factor at the speed	
	V (mph). This is based on a C. max.	.
	(dynamic) of 1.0 (negative).	2

05.2132 When applying the requirements specified in CAR 05.2132, the following procedure should be followed:

Draw a horisontal line (Line 4 of Figure .2-2) through the greatest value of n specified in Items 5, 6, and 7 of CAR Table 05-2. This will intersect line 1, drawn in accordance with CAM 05.2131 a, at point C and will intersect line 2, drawn in accordance with CAM 05.2131 b, at point E.

Example:

D

Item 5 The specified maneuver load factor = 5.33 Item 6 The gust relieving factor from CAM Figure .2-1 is .685 for s = 3.5 so for this example, $n = 1 + \frac{.685 \times 24 \times 125 \times 4.8}{575 \times 3.5} = 1 + 4.90 = \frac{5.90}{5.90}$ Item 7 $\nabla_{\text{taw}} = 35 \sqrt{3.5} = 65.5 \text{ mph.}$

ⁿ tam =
$$\frac{1}{(3.5-1.5)} \begin{bmatrix} \frac{(65.5^2)}{(391)} & -1.5 \end{bmatrix} = \frac{4.75}{4.75}$$

The greatest positive load factor of the three values above is 5.90 and it therefore determines line 4 of the basic flight envelope of Figure .2-2. It should be noted that the positive portion of the basic flight envelope is represented by the figure OCEF of Figure .2-2.

SAMPLE BASIC FLIGHT ENVELOPE SHOWING CRITICAL BASIC FLIGHT CONDITIONS

(REF. CAAN 05.2130)

REVISION TO PASE 2-4

05.2133

05.2134

When applying the requirements specified in CAR 05.2133, the following procedure should be followed:

Draw a horizontal straight line (Line 5 of Figure .2-2) through the greatest negative value of n specified in items 8 and 9 of CAR Table 05-2. This will intersect line 3, drawn in accordance with CAM 05.2131c, at point J and will intersect line 2 at point G.

Example:

Item 8 The specified maneuver load factor = -2.67. <u>Item 9</u> The negative load factor due to a down gust is as follows:

 $n = 1 - \frac{.685x24x125x4.8}{575x3.5} = 1 - 4.90 = -3.90$

The greater negative load factor of the above is -3.90 so it determines line 5 of the basic flight envelope of Figure .2-2. It should be noted that the negative portion of the basic flight envelope is represented by the figure F0JO of Figure .2-2.

In general, an investigation of the following specific basic flight conditions, which correspond to points on the basic flight envelope (See Figure .2-2), will insure satisfactory coverage of the critical loading conditions.

> a. Condition I (Positive High Angle of Attack). This condition corresponds to point C on the basic flight envelope. The aerodynamic characteristics C_N , CP (or C_M), and C_C to be used in the investigation should be determined as follows:

> > (Continued on revision Sheet No. 8)

Figure .2-3

Delete this figure.

(1) $C_{N_{I}} = \frac{n_{I}s}{q_{I}}$ (usually equals approximately 2.0)

> where n_I = wing load factor corresponding to point C

- Q_I = dynamic pressure corresponding to the velocity V_I, which in turn corresponds to point C
- (2) C_{c} = value corresponding to $C_{N_{T}}$, as obtained from the airfoil characteristics curves (See Figure .1-5)
- (3) C.P. or $C_{M} =$ value corresponding to C_{N_T} , as determined from the airfoil characteristics curves.
- b. Condition II (Negative High Angle of Attack). This condition corresponds to point J on the basic flight envelope. The aerodynamic characteristics to be used in the investigation should be determined as follows:
 - (1) $C_{N_{II}} = \frac{n_{IIS}}{q_{II}}$ (usually equals approximately (2) C_{c} = value corresponding to $C_{N_{II}}$ (may be assumed equal to zero if positive) (3) CP or C_{M} = value corresponding to $C_{N_{TT}}$
- c. <u>Condition III</u> (Positive Low Angle of Attack). This condition corresponds to point E on the basic flight envelope. The aerodynamic characteristics should be determined as follows:
 - (1) $C_{N_{III}} = \frac{n_{III}s}{q_{III}}$ $(q_{III} q_g)$
 - (2) C_c = value corresponding to C_{NIII} (may be assumed equal to zero if positive)

(3) C.P. or $C_{\underline{M}} =$ value corresponding to $C_{\underline{N}_{\underline{T}\underline{T}\underline{T}}}$

and the second

- d. <u>Condition III_I(Nodified Positive Low Angle of Attack)</u>. In order to cover the effects of limited use of the ailerons at V_g on the wings and wing bracing, such structure should be investigated for the following:
 - (1) $C_{N_{III_{T}}} = C_{N_{III}}$
 - (2) C_c= value corresponding to C_{NIIIT}
 - (3) C_M' = value obtained from Figure .2-4, where C_M is the value corresponding to C_N C_M' need only be applied to that NIII nortion of the span incorporating siles

portion of the span incorporating ailerons, using the basic value of C_M determined in Condition III over the remainder of the span.

Condition IV (Negative Low Angle of Attack). This condition corresponds to point G on the basic flight envelope. The aerodynamic characteristics should be determined as follows:

1)
$$C_{N_{\overline{IV}}} = \frac{n_{\overline{IV}}}{q_{\overline{IV}}}$$

(2) C_c = value corresponding to $C_{N_{IV}}$ (may be assumed equal to zero if positive).

(3) C.P. or $C_{M} =$ value corresponding to $C_{N_{IV}}$

- f. Condition V (Gliding). This condition corresponds to point F' on the basic flight envelope and represents the flight condition where the maximum rearward acting chord load occurs. This condition will only be critical for wing and wing bracing. The aerodynamic characteristics to be used in the investigation should be determined as follows:
 - (1) $C_{N_{ext}}$ = value corresponding to C_{c} max. (positive)
 - (2) $C_c^{\dagger} = C_c \text{ max. (positive) + 0.01.}$
 - (3) C.P. or $C_{\underline{N}}$ = value corresponding to $C_{\underline{N}_{\underline{V}}}$

5

ģ

≥ 5 (

On Figure .2-4 delete:

(Ref. CAAM 05.2134e)

and add:

(Ref. CAM 05.2134d)

05.2140-1, 1.

5-23020

1. For internally braced wings, the effects of trailing edge flaps on the wing structure as a whole can, in general, be accounted for satisfactorily by modifying, when necessary, the basic flight conditions in the following manner:

a. The average value of C_M¹ used in design conditions III and TV (CAM 05.2134 c and e) should equal or exceed the quantity

$$C_{M_{f}} = \begin{pmatrix} v_{f} \\ \overline{v}_{g} \end{pmatrix}$$

where: $C_{M_{f}}$ is the average moment coefficient about the aerodynamic center (or at zero lift) for the airfoil section with flap completely extended. (The average moment coefficient refers to a weighted average over the span when C_{M} is variable. The wing area affected should be used in the weighting).

V, is the design speed with flaps extended, as specified in CAR 05.110.

Vg is the design gliding speed used in conditions III and IV.

b. The average value of C_0^{-1} used in design condition ∇ (CAH 05.2134f) should equal or exceed the quantity

where: $C_{c,i}$ is the maximum positive chord force coefficient (average) for the airfoil section with flap completely extended. (The average chord force coefficient refers to a weighted average over the span).

When the above provisions are made, no balancing computations for the extended flap conditions need be submitted; hence, these conditions can also be eliminated from the design of the horizontal tail surfaces.

 $C_{of} x \left(\frac{v_{f}}{v_{g}} \right)^{2}$

05.2150 In special cases where an investigation for the effects of unsymmetrical flight loads is required, the following assumptions should be made:

> . Modify Conditions I and III (see CAM 05.2134-a and -c) and the most critical negative condition by assuming 100 per cent of the air load to be acting on one side of the glider and 40 per cent on the other.

b. Assume the moment of inertia of the entire glider is effective.

It will usually be convenient to separate the effects of the loads due to linear accelerations from the loads due to torque T. It may be assumed that the stresses due to unsymmetrical loads can be obtained by adding algebraically the stresses due to 70 per cent of the normal (unmodified) loading to those determined by considering 30 per cent of the normal total load to be acting upward on one wing panel and 30 per cent to be acting downward on the other. The unbalanced moment or torque T is equal to 60 per cent of the normal total load on one wing panel times the distance from the longitudinal axis to the centroid of the load normally acting on the panel. This is illustrated in Fig. .2-5.

The angular acceleration α resulting from the torque T may be obtained from the following formula:

$$\alpha = \frac{T}{T}$$
 (rad./sec.²)

where I_x = the moment of inertia of the glider (and its contents) about the X, or longitudinal axis. (I_x may be computed in accordance with the procedure contained in NACA Technical Note No. 575.) - I_x in mass units.

The torque T_n resisted by any portion of the glider may be obtained from the following expression, assuming the angular acceleration to be constant for all parts of the glider:

$$T_n = I_n \alpha \text{ (ft. lbs.)}$$
$$I_n = M_n d_n^2$$

when

where M_n = the mass of part n. d_n = the distance from the longitudinal axis to the C.G. of part n in feet

05.217A-1 For wings having mean taper ratios (see c below) equal to or greater than .33, the span distribution should be determined as follows:

Ъ.

If the ming does not have aerodynamic twist 8. . (i.e., if the zero lift lines of all sections are parallel), the span distribution of normal force coefficient (CN) should be assumed to vary in accordance with CAM 05 Figs. .2-6 and .2-7, which are assumed to represent two extreme cases of tip loading. Each case should be investigated, unless it is demonstrated that only one is critical. As an alternative method, it will be acceptable to investigate each design condition for only one span distribution using a rational distribution, except in the case of the high-angle-of-attack condition which gives the maximum forward chord loads (Condition I). For this condition, the analysis should be made for both the rational distribution and that given in Fig. .2-6.

If the wing has aerodynamic twist, the span distribution should be determined by the alternative method given in (a) above.

c. For these purposes, the mean taper ratio is defined as the ratio of the tip chord (obtained by extending the leading and trailing edges to the extreme wing tip) to the root chord (obtained by extending the leading and trailing edges to the plane of symmetry).

d. Acceptable methods of determining a rational span distribution are given in Army-Navy-Civil publication ANCL(1), "Spanwise Air Load Distribution" (obtainable from the Superintendent of Documents, Washington, D. C., at the nominal sum of 60 cents), in N.A.C.A. Technical Report No. 572, in N.A.C.A. Technical Report No. 585, in N.A.C.A. Technical Note No. 606, and in Appendix I, herein.

For all wings having mean taper ratios less than .33, the span distribution should be determined by rational methods, unless it is shown that a more severe distribution has been used.

Revision to Page .2-14

05.2174-2

05.2160 GUST AT REDUCED WEIGHT

(This paragraph deleted)

 $\| x \|^{\ell_{2}}$

The note below the figure on this page should read as follows: "NOTE: Above figures apply only to wings which have

mean taper ratios greater than .33 and without aerodynamic twist."

Revision to Page .2-15

05.217-B 1

1. The approximate method of chord loadings outlined in CAM 05.34310 for the testing of wing ribs is suitable for conventional two spar construction if the rib forms a complete truss between the leading and trailing edges. An investigation of the actual chord loading should be made in the case of stressedskin wings if the longitudinal stiffeners are used to support direct air loads. In some cases it is necessary to determine the actual distribution, not only for total load but for each surface of the wing. If wind tunnel data are not available, the methods outlined in N.A.C.A. Reports Nos. 383, 411, 456, 631 and 634 are suitable for this purpose. These methods consist in determining the "basic" pressure distribution curve at the "ideal" angle of attack and the "additional" pressure distribution curve for the additional angle of attack. These curves can be coordinated with certain values of CL, so that the final pressure distribution curve can be obtained immediately for any CT. Curves of this nature for several widely-used airfoils can be obtained directly from the N.A.C.A.

g. Fig. .2-9(b) is now plotted, using as ordinates the values of $R_b C_{\overline{x}}$ obtained from item 7 of Table .2-I. The area under curve .2-9(b) divided by the area under curve .2-8(d) gives the distance of the mean aerodynamic center from the base line 0-E in Fig. .2-8(a). This distance is indicated as \overline{x} on that figure.

05.218 B - 3

3. A tabular form will simplify the computations required to obtain the balancing loads for various flight conditions. A typical form for this purpose is shown in Table .2-II. In using Fig..2-II and Table .2-II the following assumptions and conventions should be employed:

> Careful attention should be paid to those foot-notes of Fig. .2-11 which pertain to the sign convention that has been adopted. If known forces are opposite in direction from those shown in Fig. .2-11, a negative sign should be prefixed before inserting in the computations. In particular, it should be noted that the vertical distance, ho, is negative when the wing aerodynamic center is above the c.g., and positive when the wing aerodynamic center is below the c.g.. The direction of unknown forces will be indicated by the sign of the value obtained from the equations. A negative value of n₂ will usually be determined from the balancing process, indicating a down load on the tail. For conditions of positive acceleration the solution should give a negative value for n2, as the inertia load will be acting downward. The convention for m₁ corresponds to that used for moment coefficients; that is, when the value of C_W is negative m, should also be negative, indicating a diving moment.

b. All distances should be divided by the MAC before being used in the computations.

c. The chord load acting at the tail surfaces may be neglected.

Revision to Page .2-25

05.244 HEAD-ON LANDING

- 8

It should be noted that the load factor specified in CAR 05.244 (4.0) is an <u>ultimate</u> load factor and not a <u>limit</u> load factor.

The note below sketch (d) of figure .2-16 should read as follows:

"Note: P = 900 lbs. or 2.0 times the gross weight, whichever is greater (limit).

n í

05.3213-B DETERMINATION OF ALLOWABLE STRESSES AND MARGINS OF SAFETY

1. Allowable Stresses.

8.

In order to determine the allowable stresses for the leading edge skin, a representative section of the D-nose spar should be static tested for the following loadings (the length of the test specimen should not be less than four times the width (or chord) of the spar):

- (1) Pure torsion (T) to establish allowables for torsion and chord shear in the leading edge skin.
- (2) Chord bending (M_{y}) to establish the allowable bending stress for the leading edge skin. If chord shear (S_c) is also included in this test, it should be kept low as compared with the chord bending.
- b. In order to determine the allowable stresses for the flanges and the web, if necessary because the web is unconventional, a specimen representing the web and flanges should be static tested for pure beam loads (M_x and S).
- c. In order to determine the general behavior of the entire structure, the complete spar should be proof tested for the critical conditions(s).
- d. The formulas covered in Table .3-III should be used to compute the allowable stresses. Of course, the "effective" areas used in such computations should be consistent with those used in the final stress analysis.

05.3241

5-23020

WHEELS AND TIRES

In wheel type landing gears, the approved wheel rating shall be equal to or exceed the gross weight if one main landing wheel is used, or half the gross weight if two main landing wheels are used. When unrated wheels are employed, their ultimate strengths should not be less than the ultimate loads to which they are subjected. Any standard thre adaptable to the wheel will be considered acceptable.

05.3253 - A, 1, b. Behavior of covering in compression end as a shear web, including the effects of wrinkling.

Revision to Page .3-26

insert:-

05.342

-23020

OPERATION TEST OF TOWING RELEASE MECHANISMS

As stated in CAR 05.342 (d), operation tests are required to demonstrate that the towing or launching release mechanism will function properly when so loaded as to correspond to one-half the limit forces specified in CAR 05.251. (See also CAM 05.3434 (2d)). These operation tests should be conducted with the fuselage supported and restrained in a manner which will avoid excessive "springing" of the fuselage nose sections when the test load is suddenly released. Inasmuch as the purpose of the test is to demonstrate the releasing characteristics of the mechanism under load, the fuselage resisting loads may be applied at any convenient points on the fuselage near the release mechanism location.

05,34302-2. Loading schedule. A loading schedule should be prepared, showing the load distribution to be used and giving the values of the loads to be applied at each stage of the loading process. When the load is to be applied by means of bags of shot or by weights, it is desirable to weigh each increment of loading in advance and to assign it to a marked space on the floor, so that no confusion will result. The loads can be divided into suitable increments of about one sixth (16.7%) of the required "ultimate" load. In the usual case, such increments will be one quarter (25%) of the required "limit" load, so that the "proof" test load will have been reached at the fourth increment. The "ultimate" load will then be reached at the sixth increment. After reaching the "ultimate" load, the size of the increments should be reduced so that the second additional increment will produce 115% of the "ultimate" loed. However, if the structure should show signs of failing at any time the loading increments should be accordingly reduced.

Revision to Page .3-31

05.34310 - 2c(1)

- (1) For the high angle of attack flight condition, ribs of chord length greater than 60 inches should be subjected to 16 equal loads at the load points given in Tables .3-IV or .3-V. In order to determine which set of load points is applicable to the particular airfoil used, it is first necessary to determine the following airfoil characteristics:
 - a. PD (Pressure Distribution) classification this is expressed by a capital letter followed by a two digit number such as C 10, B 11, D 12, etc. For the present purpose, only the number portion of the classification need be considered.
 - b. Cme c moment coefficient about the aerodynamic center.
 - c. Camber in percent chord. (This is necessary only in the case of airfoils having a "12" pressure distribution classification.)

These characteristics are readily obtainable for most airfoils from N.A.C.A. Technical Reports Nos. 610 and 628. For airfoils in the 10 or 11 classification, the load points should be taken from Table .3-IV, using the line corresponding to the C_{ma.C} value of the airfoil. (Table .3-IV should also be used for rib loading points in cases where the P.D. classification is not available, or in cases where the designer does not wish to determine it.) For airfoils in the 12 classification, the load points should be taken from Table .3-V, using the line corresponding to the and the camber of the sirfoil. In cases where the Cma.c. actual position of load number 1 is less than 1/2 inch from the leading edge, loads 1 and 2 may be combined into a single load (of twice the unit value) and applied at their centroid. For ribs having a chord of less than 60 inches. 8 equal loads may be used, their arrangement being such as to produce shears and moments of the same magnitude as would be produced by the application of 16 equal loads at the locations specified above.

05.34310-2c(2) (2) For 1

5-23020

For the medium angle of attack condition 16 equal loads should be used on ribs of chord of 60 inches or greater, 8 equal loads for chords less than 60 inches. In either case the total load should be computed as specified in CAM 05.34310-2a. When 16 loads are used, they should be applied at 8.34, 15.22, 19.74, 23.36, 26.60, 29.86, 33.28, 36.90, 40.72, 44.76, 49.22, 54.08, 59.50, 65.80, 73.54, and 85.70 per cent of the chord. When 8 loads are used they shall be so arranged as to give comparable results.

TARE . 5-IV - KIE LOAD POINTS FOR HIGH AME OF ATTACK

E	(6)							•		Pier	Polate 3	A Perse	at thora					
Restification	Camber		1	2	10 .	-	ф	•	-			8	n.	76	78	14	16	76
		(5) 0 to019	9	1.9	5.4	5.2	7.2	9.6	12.4	15.5	19.0	23.4	₹8.2	55.2 5	£.04	. 48.8	0 11	0.08
••••	•	020 to039	.6	2.0	3.5	5.6	6.*O	20.5	15.4	16.6	80.6	26.2	29.6	36.5	1:22	50.£	72.0	90.08
: 3	•	~_040 to069		8 •0	Q*#	6.8	8.8	11.4	14.0	18.5	12.0	27.2	52.7	0.65		528	0.57	0.08
	NT VA	060 to079	8.	2.6	9*9	6.7	916	12.7	16.2	0.05	24.2	20.8	54.0	0.0	46.7	64.4	0° 24	0.04
	Any	1860° - 04 080° -	•	8.6	9	1.6	10.5	7.81	17.4	31.2	1-12	50.5	36.6	41.6	47.0	96.4	0, 57	0.0
		10 or Greater	•	9	9 • 9	-	-	9.41	18.6	2.2	2.4	2:25	57. 61	9	9	Á 15	0.27	0.08
there as C 10. Represent as X	B 11, et chord.	o., in data table. It data, are place	or X.J	A.C.A.	Report													
					LAEL.	ю ш	NUCL -	RIB OF	LOAD	POLINI	NOR S	HIGH						
£		5					ŀ			Load	Pointe.	In Perces	at Chord					
Jassi Cotton	La Caracia Car	8 •0•	-	8,	10	•	¢.		- 7			97	ព	2	21	М	16	97
	3	0.00 to0199		2.5	5.9	6 . 8	7.9	10.4	18.1	16.5	1.05	24.4	20.9	34.5	0.11	9 .9	73.40	0.05
	3	02 to0399	•	2.5	4.5		9.7	31.5	1.4.1	17.6	21.5	26.5	8.6	360	1.1	1.11	11.0	9 Q

CIVIL AFRONAUTICS MANUAL 05 - GLIDER AIRWORTHINESS (Edition of June 1, 1940) REVISION SHEET NO. 25

998

2 2 2

23

72

1.05

28.6 25.6

21.61

1 1

0.11

6.7 8.6

9° 8

9 9

0.00 te -.0199 -.02 to -.0359

2

5.0 Dreater

14.7

8.6 7.4

9 9

(Delete this section. (This subject is now covered by § 05.350. Figure .3-8 (page .3-39) is still applicable.)

14

05.34311 WING TORSION TEST

5-23020

CIVIL AERONAUTICS MANUAL 05 - GLIDER AIRWORTHINESS (Edition of June 1, 1940) REVISION SHEET NO. 26

05.3434-2, d

d. Towing and launching loads. CAM 05.251 states that it will be unnecessary to investigate launching and towing loads aft of the front spar. However, in testing for these conditions, loads must be applied at points aft of the rear spar to resist the test load on the towing hook. Care should be taken in testing for these conditions to guard against overloading such portions of the fuselage. For instance, if the side load (CAR 05.251-d) is resisted by the front strut fitting and the tail post, and nothing else, the loading in the rear part of the fuselage might be higher than the design load and failure would occur. The solution in this case would be to apply a moment at the wing root fittings and at the strut points as well as at the tail, each of which would be less than the maximum loads for which the fuselage is designed.

When deciding the magnitude and location of the fuselage loads which will resist the towing loads for test purposes, it should be borne in mind that, in actual flight, the loads on the tow line, especially side loads, are resisted by inertia loads as well as by air loads. For example, much of the side load will be resisted by the inertia of the wing, through the wing root fittings, while the vertical components of the towing loads will be resisted mainly by the inertia of the various items of mass in the fuselage, with the loads being applied through their points of attachment to the fuselage.

Reference is made to CAR 05.245 which affects the strength of the wing root fittings and surrounding structure against unsymmetrical loads.

The comments of the preceding section regarding testing for towing loads apply also to landing gear static tests. Care should be exercised so that no part of the fuselage is overloaded locally at points where high loads would not normally be expected.

Revision to Page .3-47

insert:

05.35 FLUTTER PREVENTION TESTS

05.350 WING TORSION TESTS AND DETERMINATION OF COEFFICIENT OF TORSIONAL RIGIDITY CTR

1. In order to determine the coefficient of torsional rigidity C_{TR} , it is necessary to apply a pure torsional couple near the wing tip and to measure the resulting angular deflection of the wing at selected intervals along the semi-span.

2. Set-up. The wing should be mounted on the fuselage or a suitable jig, either of which should be anchored solidly to the floor or wall to prevent movement or displacement of the wing. The landing gear should be blocked on the airplane. The torque load may be applied to the wing tip through several beams clamped to the wing as near to the tip as is practical, such as the outermost. drag truss compression rib location. The platform cables should be attached to the torque beams an equal distance forward and aft of the elastic axis of the wing. This axis may be located experimentally by rocking the torque beam and noting the modal point on the wing chord as viewed from the tip. Typical set-ups are shown in Figure .3-8. Care should be taken to see that the strength of the local wing structure at the points of application of the torgue loads from the beams is adequate. For conventional two spar wood wings, it is advisable to apply the load directly to the spars through wood blocks rather than attempt to carry the load through a rib to the spars. Wings which are to be fabric covered should be tested uncovered.

Scales for reading the deflections should be suspended from the leading and trailing edges of the wing (excluding the aileron T.E.) at intervals of approximately 10% of the wing semi-span, and should preferably be graduated in the decimal system with graduations sufficiently fine to obtain readings to a hundredth of an inch. The deflection readings can be readily obtained by the use of a "Wye" level or transit set up at some point that will permit sighting on all scales. Several additional scales should be attached to the fuselage and opposite wing (or jig) to determine if there is any relative movement of the entire airplane. The level should be checked against a bench mark on the wall before and after each group of readings.

.3-50

- 3. Loading. The following procedure may be used:
 - a. Obtain zero torque reading on all scales, 1.e., the two platforms should be supported so that there will be no torque couple acting.
 - b. Add a sufficient amount of weight to each platform until readable deflections are obtained. In general, it will be found desirable to make this first torque moment (inch-lbs.) equal numerically to approximately 140% of the gross weight of the glider. Care should be taken to include the tare weights of the platforms in the torque computations.

c. Take readings of all scales.

d. Add sufficient load to increase the torque by 50% and take scale readings.

e. Add sufficient load again to increase the original torque by 100% and take scale readings. This last torque should result in a twist of the wing of from 1.5 to 2.25° at the wing tip, which is desired in order to obtain satisfactory data for computing C_{TR}.

f. The data to be recorded are; the load applied; its lever arm; the deflection readings at selected points; and the exact location of these points both along the span and along the chord of the wing. It would be desirable to use a table such as shown on page .3-52 which would include all computations necessary for determining C_{TP}.

4. Interpretation of results. Having obtained the leading and trailing edge deflections (F and R in table .3-VI or a corresponding set of data, the angle of twist at each section of the wing for a given torque, or platform load, is calculated and plotted against the wing semi-span measured from the wing tip.

d

 $\Theta = \text{Angle of twist in degrees at any section of the wing} \\ \Theta = \tan -1. (Leading edge defl. (F) + trailing edge defl. (R))$ (C) Chord distances between scales) $\Theta = 57.3 (F + R) degrees$

Plotting the deflection (F and R) and angle of twist (θ) against wing semi-span (L) will reveal any inaccuracies in the data and will facilitate checking the results.

The coefficient of torsional rigidity may now be computed, using the following expression:
WING TORSION TEST OF MODEL SERIAL NO.

DATE	TORQUE ARM	inches		- 1 ⁴ -
BT	LOCATED	_ inches	from wing	; tip
	MOMENTS 1. W. X AR	H -		and and a

(). 2. Ν2 × ΑΝΑ δ. Ψ5 × ΑΝΑ -

		DI	FLEC	TION	READ	NGS			· ·	_ 71	NG (1)	n.)	
Platform losd	8001 A	tion -B	¢.	D	8	·F	0	Æ	1	-J	K	-L	ETC
(incl.Plat- form wt.) (lbs)	Front	Rear	P	R	T	R	F	R	F	X	•	R	•
	Fo	Ro								1			
1. 1	- F1	81							1	:			
Z 12	72	M2							\square				
5. NS	1. T.												1
0													15

									<u>i</u>					1. M.
_	><	1		SFLEC	TIONS	3 07			ابتغب	NG;	(in,)			
Т,	W1	$T_1 F_0$	R1-10							Į .	[1 × 1	5. S	
Ζ.	W2			[N	1					÷	
3.	15		1999 - S. 1999 -	L								2	1.92	
							14			1				
_	~~~	1	OTAL D	C) C RC	TION	OF		5 - 14 . M	_	WING	(in.)	_	· + 1	
Т.	- W1	1951 - 19	<u> </u>			1.1			· · · · · ·				1	A
Ζ,	12						1.1		1.1					
3.	T NS			I			1.1	1.1	· .				· · ·	

				(¢)	CHORD	DIS	TANCE	BETHER	DI	FL CT	ION 1	OINTS,	F and	k (in.)	
_			Ι			L_		<u> </u>				L			
			ANGLZ	0ľ	THIST	07		· · ·		WILNG	(de	(Tees) -	67.	(total	<u>def1</u>)
Ŧ	1		-			Γ.			_						
5.	WS			÷		Ľ.	6								
		· · ·		÷.	: · · · ·				÷			1			
1.1			2	(L) 5100	I_SP	AN DIS	TANCE F	BOM	WING	ΠP	(in.)	Т. с. с.		

· · .	- 17	· .		v · · · · ·				
			ىتە	/40 = 1/tak	GENT TO "O"	VS "L" CURV	E AT SECTIO	nş
1.	W1						1. A. S. A.	National Action
2.	12			1	A	1 X 1 1 1	5	
<u>.</u>	15	_	l					
	· · ·							
				CTR ± 10-6	= ¥ 4L	π 10 ⁻⁶		
1.	m.						- 1 A A	
2.	12			T		1		1.
3.	Π5		1		1	I		
			•	No. 4	• • • • •			

Remarks

Sec.

= н ат = <u>a</u>e ge

where

 C_{TR} = Coefficient if torsional rigidity (lb.in.²). It is equal to the reciprocal of the torsional deflection per unit length per unit torque and is usually expressed in values to the 10^{-6} .

 $d\Theta$ = Angle of twist in degrees, in length dL (in inches), caused by a torque of M inch pounds. Referring to the curve of angle of twist (Θ) vs. semi-span (L) shown in Figure .3-9, it will be seen that $d\Theta$ = slope of the tangent drawn to the curve at any given point. Hence, it is only necessary to draw the required tangent to the curve at the value of L at which the C_{TR} is desired and obtain d Θ to use in the above formula for C_{TR}.

It is very important that the tangent line be drawn accurately. This can best be done by first drawing the reflected curve to the point of tangency (original curve may be drawn on transparent paper and used reversed or the tangent spotted in directly by use of a small mirror), and then by bisecting the resulting angle, as shown in Figure .3-9 for a wing section 60 inches from the wing tip. The tangent line should be extended to both axes so that the slope of the line may be computed accurately which in this example is equal to de_{60}/dL_{60} .

 C_{mp} should be computed for each of the three torque conditions used at a number of points along the wing semi-span and plotted against the distance from the wing tip (L). This curve will show the variation of torsional rigidity throughout the semi-span and may be used for purposes of comparison with wings similarly tested. (See CAM 05.4100).

.351 VIBRATION TESTS

1. The required vibration tests may be made by shaking the various units of the glider by means of an unbalanced rotating weight driven through a flexible shaft at speeds which can be controlled and measured, or by other acceptable methods. These tests should be made on a complete glider. The frequencies obtained for the various units should be entered in Form ACA-719-Flutter Control Data. (A reproduction of this form to approximately $\frac{1}{2}$ scale is shown as Table .3-VII on page .3-55.) Copies of this form may be obtained from the offices mentioned in paragraph 2 below.

2. Vibration equipment is available at the Civil Aeronautics Administration offices at LaGuardia Field, Long Island; Kansas City, Missouri, and Santa Monica, California. Loan of this equipment may be obtained by contacting the Regional Manager. Civil Aeronautics Administration representatives will assist the manufacturers' personnel in operating this equipment.

.3-53

CIVIL AERONAUTICS MANUAL 05 - GLIDER AIRWORTHINESS (Edition of June 1, 1940) REVISION SHEET NO. 30 TORQUE APPLIED AT THIS STATION 2.0 6 CURVES OF ANGULAR TWIST FOR THE THREE TORQUES USED 5 1.0 **0**, IN DEGREES C IR POINT OF TANGENCY 1.(ANGLE OF TWIST, 3 REFLECTED CURVE d0₆₀ 2 •5 1 TANGENT $\lambda_{i_{i_1}}$.dL₆₀ C 0 20 60 80 40 100

Z.NI

CTR X 10⁻⁶ - LB.

يني. مريد

5-23020

L - DISTANCE FROM WING TIP, INCHES

RECOMMENDED SCALES: $L:1^{n} = 20^{n}$ $\theta:1^{n} = .1^{\circ}$ TO $.2^{\circ}$

FIG. . 3-9 PLOT OF RESULTS OF TORSION TESTS

-3-54

Ĵ-

ŝ.

.3-55

TABLE . 3-VII

3. Attitude of Aircraft. All of the vibration tests, with the exception of the fuselage vertical bending and possibly the fuselage side bending tests, can be conducted with the glider tail wheel (or skid) resting on the ground, providing that the natural frequencies of the various units may be correctly recognized with the glider in this position. It has been found desirable, in some cases, to deflate the landing gear tires (and tail wheel tire, if used) approximately 25%, in order to lower the natural frequency of the tires below the frequency range expected for the structure. If difficulty is experienced in recognizing the significant frequencies with the tail wheel (or skid) on the ground, it should be raised just free from the ground, either by a sling around the fuselage located as far forward as is practical, or by blocking up in the region of the wings. The latter procedure may be preferable for the fuselage vertical and side bending modes.

4. Location of Vibrator on the Structure.

- a. The proper location of the vibrator on the structure is important in obtaining satisfactory results. Suggested vibrator locations for exciting various modes of vibration are given in Fig. .3-10.
- b. The effect of the vibrator weight on the frequency of the structure may be appreciable especially for the control surfaces. The lightest weight vibrator giving satisfactory results should be used. In general, vibrators weighing up to 10% of the weight of the surface to which they are attached may be used without correcting the observed frequencies, unless the vibrator distance from the hinge line is such as to create a much larger relative effect upon the moment of inertia of the surface. However, approximate frequency corrections can be made by adding several small. increments of weight near the vibrator at the same arm from the hinge line as the vibrator, and plotting the resulting total increment weights (including vibrator weight) against the frequencies observed. Extrapolating this curve to zero weight should give the corrected frequency.
 - In general, the following points should be considered in the attachment of any type of vibrator to a structure.
 - (1) The location is of primary importance and should be at a point of large deflection. See Fig. . 3-10.
 - (2) The vibrator should be so mounted that its line of force will be in the most advantageous direction to excite the vibration mode desired.
 - (3) It is desirable to attach the vibrator to a part of the structure that is fairly rigid such as the wing spar, control surface ribs, etc.

.3-56

(4) The local structure to which the vibrator is attached should have adequate strength for the loads imposed by the vibrator.

5-23020

6.

CIVIL ARGORANTICS MANUAL 05 - GLIDER ALHWORTHINESS (Edition of June 1, 1940) REVISION SHEET NO. 31 VERATION MODES AND VERATOR LOCATION

	1	Application of real and provide the set of the set of the second	1 =		1	
	i	(12.5 million at the bar of the radian (12.5 million)				
		In gring evidence the party the trade into evidence the party with the state of the free part into the trade (12).	4		11	Anno in 1 to 10 and a many chanter and a long and a long and a long a long and a long
	1	Bass to firm 3 about, ensage belt preferra- mitiging insues (or second) at such that (Theodor and at how on putder 1.5.)				
	1				4	
	in class					and as to partic transmiss with the constant of the constant. ("Whenday your particular and of the theory of the constant of t
and the second	5	Beft aberrites feilufat by or dent to prine under the spirit prine dent to prine under the spirit pair that (Threater at laner on the gas advertur.) I.d. or aft of how on the first	1	au I l'I deva	1	britismit vitrostan of the stabilisme. Distinct to Line LL, for the stage. Smally any survey are constrone and such and survey as Lan.
		the starter (or 1/8 of starts) starten) with the other starts and start with the start start and start the start starts of starts (start the fait start of starts of starts and (literate of searce of start, span and 2.34)	#		11	artical vibration of contribution, builded to the standard of
	\$	Rank atlants of a with Pelapize up and them periods, under the principle optime of the neutral cohlar (or plus pull theor). (Plusher between a cohler and inner and bi- illens theory	1			And Star, J' start, Manifant as a unit product and Starting Annuarements. Annuare Annuarements and and and and Start as first a subsection and and Lister as and astrong, a sub-
	1	the state of a safe sector of the state of t		ų	1	August 1. and a state will download a state of the state
		workshich fribunta of allowed under the first sector of the project that the forth first sector of the sector and the forth public (filterator more sets and at allowed			Riverden	of the and rates burger that I are the second s
	1	Why works as two apportent is its manual (manual), or to some two the supportent (manual), or to some two supportent of the trans particle. (The supportent of the support supportent of the support supportent of the support	8			An and may deal with a set of the
	H	Anno og fors 11 dann, onnøg talf fight med jafb halfen of tis forg ann in oppi- tist fabrandan in be om tilt-anglin di- stati fightman in bes om tilt-anglin di- stati fightman in bes om tilt-anglin di-				
	and a second	Developed Theritian of the stag dent & pression wide. Martin and the halves of the stag arres in most chemical and the stag arres in most chemical fully and				
	1	and that they denote an an of cluste. Also of Higgs) these to 13 above, manyer right and left blows to 13 above, parentia, out of the	a .			Predicted vibration of an and an an and an
	1	the time, ("Alternor and may the particle of of alterna and of right," but as the 12 dery, angeh parter of reference of the lines, tangeh parter of		礀		And the second statement of th
	-	and fame index; " (Threetex available its and available its of they available rear indexplane itsus interaction (beins as itsm 1,4 about, marget mather of	8			
	Tereton	And the state of the second state is the second state of the secon	a .		1	ונוס או אווון שווקרא איז או ארגא אואר איז קראל וווער ז'ל איז איז און איז איז נוסט איז
,		Micle tail and an instage dipeting exceeding any line of a share fast the R 4.00 (Threader on CAs or Fast)- tive to hape time, at the of extreme.)	n	in	Ser ston	tern ta tang 10 darite / (titterine an tan
4			8		Į,	Begeurt beuting an & bean (filme at one and) in worken planes openiting at the risking.

FIG. .3-10

53020

5. <u>festing</u>. A certain amount of experience is necessary in recognizing the various modes and resonant frequencies. In conducting the tests, the vibrator should be placed on the structure as suggested and then operated at increasing speeds until a response peak is reached (the amplitude of vibration of the structure is appreciably greater than at slightly higher or lower speeds, thus indicating a resonant condition).

6. During the vibration tests involving the control system, the controls should be restrained by an assistant to simulate the condition in flight. When the control system incorporates dampers or power boosters, their effect on the frequencies should be considered. It is important that cable control systems be rigged to their proper tension. In general it will be found that cable control systems will have a larger resonant frequency response range than a more rigid system, such as one incorporating push pull tubes with close fitting joints. In the former case, when an unusually large range is encountered, it is desirable to record the frequencies at both ends of the response range. In most cases it is satisfactory to note only the asan frequency value for the particular mode.

7. It should be noted that it may be possible to excite a certain mode in more than one way. For instance, the fuselage torsional frequency may be excited in the fin bending test and conversely the fin bending frequency may be excited in the fuselage torsion test. Cases of this type will serve as cross checks on each other.

The phase relationship of vibrating parts may be determined by the method shown in Fig. .3-11 as applied to the particular case of the elevators. The metal plates A and B, attached to the trailing edges of the elevators and interconnected with a wire, are necessary only in the case of fabric covered surfaces or surfaces which have a poor electrical interconnection. When the parts are vibrating the phase relationship may be determined by manually holding the leads C and D close to the surfaces so that intermittent contact is made during each cycle. If the light flashes or clicks are heard in the headphones at regular intervals (with the contacts in the same side; i.e., upper or lower), the surfaces are vibrating in phase, whereas, if the light does not flash, or no click is heard in the headphones, the surfaces are out of phase. This should be verified by reversing one contact, for example, putting contact D on the upper side.

The location of the nodes of the various forms of vibration should be established by the tests. In many cases the location of the nodes is self-evident, or can be determined by visual observation or by "feel". Determination of the nodes by the foregoing methods is generally satisfactory for most modes of vibration. If the torsional aris of vibration of the fuselage (or the nodes for other modes of vibration) cannot be definitely established by the above methods, a more detailed procedure, involving measurements of the amplitudes of vibration at various points, should be employed.

.3-58

3

TEST SET-UP FOR DETERMINATION OF PHASE RELATIONSHIP

.3-59

8. Fig. .3-10 gives a detailed description of the possible modes that may be observed during the tests and includes suggested vibrator locations for each mode. In general, only a fraction of the modes listed will be applicable to any one glider.

.3-60

s?

 $\hat{\mathbf{r}}_{i}$

÷.

05-4000-4. Cables and Wires.

Cable and wire where used should be of aircraft quality. Solid wire should be used only in drag systems. Sizes smaller than 16 gauge (.051" diameter) should not be used. The usual ferrule and thimble fastening is satisfactory if soldered with non-corrosive flux and well cleaned and varnished or primed. The wire should not be over heated in the soldering operation. Where used for tail or wing stays, or supports, 19 wire stranded cable with a tinned copper wire wrapped and soldered serving is satisfactory. The use of cables in control systems is discussed in CAM 05:434-1. See Figures .4-1, .4-2 and .4-3 for cable fittings and splices.

05.4000-5 Aluminum Alloys

5-23020

The aluminum alloys have had some use in present day glider construction for fairing and gap covers as well as for primary structures. It should only be worked as a structural material by those trained in its use and then with the same care as applied to airplanes. It is not advisable to use it for fittings in wood or composite construction gliders unless properly protected from corrosion. (See CAM 05.4013).

Revision to Page .4-2

05.4001- 2. Splices.

Splices in structural wood members when necessary should have a 12 to 1 slope or greater and surfaces fitted for perfect uniform contact before gluing. The surfaces should be formed with a planer, if possible. The dimensions and type of splice should be similar to those given in CAM 18. Care should be taken in clamping glued splices to use thick "cushion" blocks of the proper slope and size so as to produce clamping action perpendicular to the line of the splice, uniformly distributed, and not such that the pieces tend to slip past each other. A finished splice in wood or plywood should show no change in cross-section at the splice.

05.4001- 3. Glued joints.

High grade casein and synthetic resin glues are satisfactory for making glue joints in aircraft elements. The glue manufacturer's directions should be followed in the mixing and preparation of the adhesives. It should be noted that condition of the surface, moisture content of the wood, gluing pressure, assembly time, and protective coatings as well as other factors play an important part in the fabrication of acceptable joints. Casein glue is extensively used in glider and airplane wood construction and its application has been found satisfactory when used as follows:

All glue joints should be held for at least 8 hours under pressures of 100-150 psi for soft woods and 150-200 psi for hard woods, at temperatures of from 65° F to 90° F. No glue which has been mixed for more than 4 hours should be used for gluing structural parts. Enough glue should be used so that it squeezes out of a joint at the edges and this excess, while it may be removed by scraping, must not be wiped off.

Revision to Page .4-6

05.4001-6 a.

Steel sheet used for stressed fittings should be handled with special care to avoid scratching or marring the surface in any way. Lines should be drawn with a pencil and not a sharp instrument. All bends should be made around a block which has had the corner rounded off to a radius of at least twice the thickness of the metal (See CAM 18). During the bending operation, sheet should be held in a vice which has the jaws covered with copper, aluminum or brass so as to prevent marring. Hammering should be done through a hardwood block rather than on the bare metal. Holes may be punched provided they are reamed out at least .010" to get them up to size. When drilling stacked sheets, the burr should be removed from each sheet so that the hole is clean and surface smooth. Where cuts to form corners are made, a 1/8 inch diameter hole should be drilled in the corner and the cut made to the hole, not past it.

Revision to Page .4-7

5-23020

P

05.4001-6, b. High strength aluminum alloy sheet must be worked with caution to avoid any marring, scratching, or sharp bends. The strong aluminum alloys, such as 17 ST and 24 ST, should not be bent to a radius less than four times the thickness of the sheet (CAM 18). The bend should be preferably at right angles to the direction of the grain. Bends can be made over soft material such as hardwood.

05.4001-7, b. In glider construction, brazing will be found to be a satisfactory method of joining thin wall tubes. When properly done, there is no danger of burning or injuring thin wall tubes. The use of brazing will be permitted in the assembly of light control surface tubing, and in fuselage joints not subject to high loads or located at important connections.

05.4001-9, c.

Wings. Long unsupported ribs may require bracing to prevent them from turning over under the fabric. This can be accomplished by cross-bracing with fabric tape cemented to the rib cap-strips. The ribs should be ribstitched with a good linen thread on about 5 inch centers (See CAN 18 for recommended sewing practices). It is also advisable to cement the fabric to the ribs.

Revision to Page .4-10

05.4020-3.

Approved locking devices include cotter pins, safety wire, peening, and, with certain restrictions, selflocking muts and Dardelet Threaded parts. For pins that are frequently removed, hard wire safety pins are satisfactory, provided it can be shown that there is no danger of their coming loose or interferring with the operation of the controls (See CAM 05.414 regarding the use of clevis pins).

05.4020-4.

5-23020

The use of self-locking nuts is limited to the restrictions noted on the pertinent manufacturer's recommended practice sheets listed on the CAA Product and Process Specification P. & P.4.

05.4100 TORSIONAL STIFFNESS

1. It is essential that the wing structure have adequate

Revision to Page .4-22

5-23020

÷

stiffness in order to insure freedom from flutter and other undesirable characteristics. This is particularly important with reference to wing torsional stiffness. Fabric covered wings, in particular, may be critical in this respect. The test procedure for determination of the torsional rigidity of the wing is outlined in CAM 05.350.

2. Since the actual torsional deflection of the wing will depend on the moment coefficient of the airfoil employed, it is advisable to introduce the additional criterion that the maximum torsional deflection under the limit load critical for torsion not exceed 5%.

05.4111-1 BUILT-UP SPARS

1. Of the built-up types of spars, the box with smooth plywood faces is the most convenient for attaching ribs and has half as many flanges to make as the "I" type. In either type, blocking must be provided at all points where there are fittings attached, etc. Such blocking must be tapered off at the ends to avoid concentration of stress in the flanges. Intermediate verticals are provided in some cases to increase the allowable stress in the webs. These verticals need not be filleted at the ends unless they also carry a concentrated load to be distributed into the spar web. On box spars the attached rib verticals provide this stiffening effect on the webs. CAM 18 shows details of spar construction.

05.4111-4. Laminated spars may be spliced in either plane, and splices in the various laminations should be spaced well apart. Splices in solid spars, if any, should be in the vertical plane, as shown in CAM 18.

P

5-22030

Revision to Page .4-24

05.4120-3. Steel struts have the necessary end fittings welded on so that the load is carried through the weld in shear, while with aluminum alloy the fittings are riveted or bolted into the end of the strut. A typical end-fitting for a streamline steel strut is shown in Figure .4-7. For a single strut, it is desirable to provide universal end fittings similar to Figure .4-7(b).

1

Revision to Page .4-25

05.434-1. Cables. Control cables should be of the 6 x 19 or 7 x 19 extra-flexible type, except that $6 \ge 7$ or $7 \ge 7$ flexible cable is acceptable in the 3/32 inch diameter size and smaller. For properties see Table 4-14 of ANC-5. The 7 x 7 construction is found satisfactory where slight cable bends around pulleys of only 30° or less are encountered. Cable end splices should be made by an approved tuck method such as that of the Army and Navy, except that standard served and soldered splices are acceptable for cable not over 3/32 inches in diameter. However, cables of other sizes with served and soldered fastenings will be satisfactory provided they are not stressed above 50% of their rated strength. Approved swaged type terminals are also acceptable. Dimensions for approved splices are given in Figure .4-1. It should be remembered that cable sizes are governed by deflection conditions as well as by strength requirements, particularly when a long cable is used. Some acceptable types of cable joints are given in Figure .4-3.

05,4610-3. Pilot and passenger enclosures. Removable "scoops" around the pilot should be securely attached to carry the air loads encountered at the maximum gliding speed, but must be easy to release and push off in case the pilot has to bail out. They should be so designed that their removal in flight at high speeds will not injure or inconvenience the pilot or passengers, or block the exits. The nose may be built up around the pilot and only a local portion be removable. Sufficient room should be provided for exit, wearing the type parachute for which the seat is designed. A clear fore and aft opening of not less than 24 inches is desirable.

Revision to Page .4-48

05.4630-4.

Curved monocoque type. The curved monocoque style of construction necessitates laying the plywood on in smaller panels where there is double curvature. Longitudinal plywood seams should be supported by light internal stiffeners. These may run through the bulkheads and serve also as longerons, or be laid only in between as local (intercostal) stiffeners. The rear part of curved fuselages is often made straight conical with oval sections so that there is curvature in one direction only, and the plywood may be laid in long lengthwise panels.

Revision to Pages .4-50, .4-51

5-23020

1

05.48 TRAILER DESIGN AND RELATED CONSIDERATIONS

Insert:

5-23020

1. The usual method of transporting a glider from one location to another is to dismantle the craft to the extent necessary to place it on a trailer which may be towed to the desired location. This introduces the problem of properly mounting and securing the various components of the glider so that no damage will be sustained which would adversely affect the airworthiness of the glider.

2. The following precautions should be observed in an effort to minimize the effects of loads imposed on the glider structure during transit:

- (a) The glider fittings normally designed for wing strut attachments, wing root attachments, or empenhage assembly should not be used for mounting the glider components on the trailer unless special care is taken to eliminate the possibility of external loads being applied to the glider structure at such fittings.
- (b) The points or areas on the glider structure at which the glider components are supported and secured should be locally reinforced and protected to avoid damage or distortion.
- (c) The trailer supports should be designed so as to distribute the supporting loads over an appreciable area of the glider structure.
- (d) Trailer frames which deflect or weave excessively while being towed over rough road should be avoided. The loads which might be imposed upon the glider structure as a result of excessive trailer frame deflection may cause incipient or actual structural failures.

Page .4-54

05.713 Airspeed Indicator Installation Calibration

In calibrating the airspeed indicator installation it is important to have available for computation purposes, the winds aloft, the pressure altitude and the free air temperature records. The above values will be employed in conjunction with any of the acceptable calibration methods described in the following:

- I. A free flight over a measured speed course of at least one mile, suitable markers of which should be easily visible to enable observations to be made from the aircraft.
 - 2. A flight over a measured speed course, as previously outlined, while being towed by a powered aircraft or an automobile.
 - A flight utilizing a trailing pitot-static tube bomb installation, as previously outlined, while being towed by a powered aircraft.
 - 4. A free flight utilizing a trailing pitot-static tube bomb installation connected to a master airspeed indicator, the indications of which can be used to form a basis for comparison.

(1)

CIVIL AERONAUTICS MANUAL 05 - GLIDER AIRWORTHINESS (Edition of June 1, 1940) REVISION SHEET NO.46

APPENDIX I

A SIMPLE APPROXIMATE METHOD OF OBTAINING THE SPANWISE DISTRIBUTION OF LIFT ON WINGS

1. SUMARY

This appendix presents and describes a simple and rapid approximate method for the determination of the spanwise distribution of section lift coefficient of on wings, for use when a rational method is required. One completely worked example and three additional examples which compare the results obtained by this approximate method with available theoretical methods are included. Limitations of the method are given in Section 6. The method herein described incorporates a tabular form for use in making the necessary computations. In practice, it is necessary to enter only 7 basic columns in the table, and the remainder of the work is a simple routine procedure which can be carried out by personnel with no engineering knowledge of the principles involved.

2. EASIC CONSIDERATIONS

It is well known that the lift distribution for any wing can be found in terms of the wing lift coefficient $C_{I,s}$ the basic lift coefficient c_{1bs} and the additional lift coefficient c_{1a_1} , as related by the formula:

Ċ

In order to determine the values of c_1 along the span for any given design condition corresponding to a specific value of the wing lift coefficient $C_{I,j}$ it is, of course, necessary to know the values of c_{1a} , and c_{1b} along the span. (It might be noted here that, if the wing has no aerodynamic twist, $c_{1b} = o$ and $c_1 = C_{IC1B_1}$.) These may be determined by the following approximate formulas which were derived from the results given in Reference 1:

I-1

$$c_{1a_1} = 1/2 \left[\frac{a_0}{\overline{a_0}} + \frac{4\overline{c}}{\overline{n_0}} \sqrt{1 - (\frac{y}{b/2})^2} \right]$$
 (2)
 $c_{1b} = \frac{a_0}{2} (\alpha R_0 + \beta)$ (3)

See Section 8 for nomenclature.

5_22020

CIVIL AERONAUTICS MANUAL REVISION SHEET NO. 46

In using these basic formulas, the following values must be

The computation of c_{1a} , and c_{1b} is conveniently adapted to a tabular form, the use of which is described in the following section:

3. USE OF TABULAR FORM

05-100 I

determined:

The tabular form for computing the values of c_{1a_1} and c_{1b} is shown as Table 1. Briefly, the use of this Table consists of entering the basic geometrical data required in columns (1), (2), (3), and (16); entering the "multiplier" in column (4); entering the basic aerodynamic data required in columns (6) and (17); and then proceeding with the routine computations as indicated in the body of the Table. The value of c_{1a_1} is then obtained as column (15). The value of c_{1b} is obtained as column (23), in case high lift devices are <u>not</u> used, and as column (26) if such devices are used. The procedure for using this Table will now be outlined:

Column (1)

Before entering the values of $\frac{Y}{b/2}$ in this column, it is necessary to divide the semi-span into a convenient number of sections, and then divide these sections into a convenient number of even parts. Examples of this are shown on Fig. 1. It is necessary to locate section divisions at the beginning of the tip region (See Fig. 1(1)),

CIVIL AERONALITICS MANUAL REVISION SHEET NO. 47

at the ends of high lift devices (See Fig. 1(2)), and at points where there is an abrupt change in plan form (See Fig. 1(3)). These section divisions are shown as heavy lines on Fig. 1. The sections thus obtained are then divided into an <u>even</u> number of parts as indicated in Fig. 1. (An <u>even</u> number of parts is necessary in order to insure accuracy in the numerical integration which is automatically provided for in the Table.) The values of $\frac{V}{b/2}$ may now be entered in column (1), taking care to enter the $\frac{V}{b/2}$ values at the main section division <u>twice</u>, as shown in the numerical example (Fig. 3).

Column (2)

Enter the chord, c, in inches corresponding to the $\frac{1}{5/2}$ value on the same line.

Column (3)

Enter here the actual width in inches of the small divisions of the semi-span within the section (See Fig. 3).

Column (4)

Enter here a multiplier which, within a section, is a series of the following form (Simpson's rule for approximate integration):

It will be noted that the first and last terms of this series are .333, and the intermediate terms are a repetition of 1.333 and .667. Examples of multiplier values follow:

Two divisions: .333, 1.333, .333 Four divisions: .333, 1.333, .667, 1.333, .333 Six divisions: .333, 1.333, .667, 1.333, .667, 1.333, .333 Fight divisions: .333, 1.333, .667, .667, 1.333, .667,

(See also Fig. 3 for an example of this procedure.)

Column (6)

Enter here the slope of the lift curve, a_o, for infinite aspect ratio in C₁ per degree for the pertinent airfoil section (or airfoil-flap combination). Data for this purpose can be obtained from standard NACA reports.

Column (16)

Enter here the angle of incidence, i. This is the angle between the chord line (the line used as datum for airfoil

I--3

CIVIL AERONAUTICS MANUAL REVISION SHEET NO. 47

ordinates and angles) and the reference axis. The reference axis can be chosen as any convenient axis in the plane of symmetry, such as, the fusehage axis or the chord line of the root chord. Care should be taken in using the proper sign for i, positive values being as measured in the sketch below. (The sign of α_{10} is shown as negative in the sketch to agree with NACA airfoil data where the reference line for angles of attack is always the chord line. Therefore, considering only the geometry of the particular sketch, β is obviously $\mathbf{i} + \alpha_{10}$ or using the sign and expression for β given on the sketch, $\beta = \mathbf{i} - (-\alpha_{10}) = \mathbf{i} + \alpha_{10}$.

Zero Lift Line β i Chord Line β i Chord Line

 $\beta = i - \alpha_{lo}$

<u>Column (17</u>

5-23020

05-App I

Enter here the angle of attack for zero lift, α_{lo} for the pertinent airfoil section (or airfoil-flap combination), <u>taking care to use</u> <u>the proper sign</u>. Data for this purpose can be obtained from standard NACA reports. Computations can now proceed in accordance with the instructions on Table 1. In cases where high lift devices are not used, the final values of c_{la_1} and c_{lb} for design purposes are given in Columns (15) and (23), respectively.

When such devices are used, the c_{12} , values of Column (15) still apply, but it is necessary to fill out Columns (24), (25), and (26) in order to obtain the final c_{10} (Column (26)) values for design purposes. Instructions for filling out these columns are given in the following section.

4. PROCEDURE FOR OBTAINING CID WHEN HIGH LIFT DEVICES ARE USED

When high lift devices are employed, it will be found that the cib values in Column (23) have a sharp discontinuity at the end (s) of the flap, as shown in the example problem, Fig. 3. It is, therefore, necessary to properly adjust these values in order to obtain better agreement with actual measured span distributions.

This adjustment process is performed by computing Column (24) to obtain clbc and plotting the values thus obtained against the semispan. Examples of this are shown by the dashed lines on Figs. 2 and

I--4

CIVIL AERONAUTICS MANUAL REVISION SHEET NO. 48

05-App I

6. These curves are then faired as shown by the solid lines on Fig. 2 and 6, taking particular care to fair in such a manner that the <u>total area under the faired curve is equal to zero</u>. The values of c_{1b}c from the faired curve are then entered in Column (25) and the final c_{1b} for design purposes is obtained in Column (26)

5. COMPARISON EXAMPLES

These examples are included to show a comparison between the results obtained by the approximate method outlined herein and more exact theoretical methods which have previously been shown to give satisfactory agreement with experimental results. (Reference 1 includes a large number of comparison examples which are of interest.)

Example #1

The wing planform of this example is shown in Fig. 2. The wing has no aerodynamic twist, except that induced by the flap, which is deflected 30° . This example is taken from NACA Technical Report 585, page 3 (Reference 2). A table showing the computation of c_{1a} and final c_{1b} is shown in Fig. 3, fairing of $c_{1b}c$ is shown on Fig. 2, a table giving the computation of c_1 for a wing lift coefficient $C_L = 1.72$ is shown on Fig. 4, and a comparison of final values of c_1 , c_{1a} and c_{1b} with those obtained theoretically by reference 2 is shown in Fig. 5. It will be noted that the agreement of the c_1 values is very satisfactory for design purposes.

Example #2

The wing planform for this example and the comparison curves of c_1 are shown on Fig. 7. This wing has no aerodynamic twist. It will be noted that the agreement of the approximate method with the theoretical results is satisfactory for design purposes. (The C_L value of 4.52 for this example is a theoretical value corresponding to an angle of attack beyond the stall. However, the c_1 values for this wing at angles of attack below the stall would be directly proportioned to those shown on the Figure.)

Example #3

The wing planform and comparison curves for this example are shown on Fig. 8. This wing has a straight center-section, a root to tip chord ratio of 4, and an aerodynamic washout of 2 degrees. The lift coefficient of the wing, C_{L} , is 0.687. In this case, a comparison is made between the $\frac{C_{L}C}{D/2}$ values given by the approximate method and the theoretical curve from NACA Technical Note 732 (Reference 3). (It will be noted that the value $\underline{C_{L}C}$ is directly proportional to the load per foot of span

I--5

acting on the wing.)

Ъ/2

CIVIL AFRONAUTICS MANUAL REVISION SHEET NO. 48

Example #4

05-App I

This comparison example is shown on Fig. 9. The flap deflection is 60 degrees, the ailerons are in neutral position, and the wing C_{T} is 1.716.

The theoretical curves for c_1 , c_{1a} , and c_{1b} are the same as those shown in Fig. 7-4, page 7-44, of ANC 1 (1). It will be noted that the agreement of the approximate method with the ANC 1 (1) theoretical method is entirely satisfactory for structural design purposes. Fig. 9 also shows a comparison of the c_1c values of the approximate and theoretical methods. (The term c_1c is directly proportional to the load per foot of span acting on the wing.)

6. CONCLUSIONS

On the basis of the comparison examples contained herein and many other comparison examples which have been completed, it is concluded that the approximate method given herein of computing spanwise distribution of c_1 is satisfactory for structural design purposes, provided that:

- 1. The aspect ratio is within the normal range of values (say from 5 to 12), and,
- 2. The wing has reasonably rounded tips, if the taper ratio is greater than 0.5. (This restriction as to rounded tips does not apply for taper ratios less than .5.)

In cases where the wing does not have reasonably rounded tips and, at the same time, the taper ratio is greater than .5, the approximate method can also be used provided that an empirical tip correction such as is outlined in paragraph 1.32 of ANC 1 (1), "Spanwise Air Load Distribution" is employed. This method is considered satisfactory for any amount of aerodynamic twist that may be encountered in conventional design practice.

7. REFIRENCES

5-23020

- 1. Schrenk, O.: <u>A Simple Approximation Method for Obtaining</u> <u>the Spanwise Lift Distribution</u>. T. M. 948, N. A. C. A., 1940.
- 2. Pearson, H.A.: <u>Span Load Distribution for Tapered Wings</u> <u>with Partial-Span Flaps</u>. T. R. 585, N. A. C. A., 1937

I-6

- 3. Sherman, Albert: <u>A Simple Method of Obtaining Span Load</u> <u>Distribution.</u> T. N. 732, N. A. C. A., 1939.
- 4. ANC 1 (1): Spanwise Air-Load Distribution. 1938.

CIVIL AERONAUTICS MANUAL REVISION SHEET NO. 49

05-App I

8. NOMENCLATURE

- S Wing area, square inches
- b Span, inches
- c Chord, inches
- c Average chord, inches (= S/b)
- y Distance of a particular station from centerline of wing, inches
- CL Wing lift coefficient
- c_{1a_1} Additional lift coefficient for a section when wing $C_L = 1.0$

 c_{la} Additional lift coefficient for a section (= $C_{Lc_{la_i}}$)

cib Basic lift coefficient for a section due to aerodynamic twist, when wing is operating at zero lift

 c_1 Section lift coefficient (= $c_{1a} + c_{1b}$)

- α_{lo} Angle of attack of a section for zero lift, degrees
 - Angle between the chord line and the reference axis, degrees (see sketch on page 6)
 - Angle between the zero lift line and the reference axis, degrees (see sketch on page 6; note that $\beta = i \alpha_{10}$)
 - Angle between reference axis and the wind direction, degrees (positive when the reference axis is so inclined to the wind direction as to produce positive lift, assuming (for this purpose only) that the reference axis acts as a zero lift chord line on airfoil section)
- \sim_{R_0} Angle between the wind direction and the reference axis when the wing is operating at zero lift, degrees
- α_{a_s} Angle between the zero lift line of a section and the wind direction, degrees $(\alpha_{a_s} = \alpha_R + \beta)$
 - Lift curve clope, CL/degree
 - Section lift curve slipe, cy/degree (slope of graph of cy vs.04)

I-7

5-23020

a

ao

1

β

 $\boldsymbol{\alpha}_{\mathrm{R}}$

1

EXAMPLES OF WING PLANFORM DIVISION

FIG. I

5-23020

I-8

05-App I

CIVIL AERONAUTICS MANUAL REVISION SHEET NO. 50

t i jež saža

300

PLANFORM

FAIRING THE CURVE OF CUEC VS.

COMPARISON EXAMPLE FROM N.A.C.A. T.R. 585

FIG. 2

5-23020

્યુ

	ج					.,		꾓	NN NN	비	A	<u> </u>	S	5	۲ اک	B	2) Zl	· · ·		•		5 . 1 5		•	i i
$ \begin{array}{ $									1997 - 1997 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1					5	1						$\frac{\partial r}{\partial t}$ $\frac{\partial r}{\partial t}$ $\frac{\partial r}{\partial t}$	<u>اه،</u>	a Ne	1	Į	1
$ \begin{array}{ $	Ľ	0	$\overline{0}$	0	0	0	Θ	0	0	3	9	9	9	9	9	9	0	0	0	۲	@	8				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c $		iky.			0	° ≟ 8 3-3 ⊙_~	99 90	0); •	Θ	0-1	9	Ð-0	0.0	<u>6</u> /د	ê-	0120	9-6	0.0	0.0	<u>8</u>		0	8	с.,	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c $	בן	0 00	10.0	46. 14	192 7	34 -Inc.		1.000	- 201	000	1000	1.000	486	1.997	928	000	8.00	A A A			610	1 10 1	A.5	1.87 1.8	1.0	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c $	1	1	2 20 40	12:1 20	2101 5	100- 100	┛	1000	40-1	900	186	385	12601	2025	Lala	000	A 00	A.a.	42.4.4		250	2	8 30	81	8	1
$ \begin{array}{ $	1	280 3		19-1-20	Z 1454	100 - 100		1.000	1.070	210		287	1.054	1 2 2 2 2	1.027	000	800	7 200			250	2	2	1	2	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1		4 201		122	207 17				SH1		1 235	1007	1 200		990	9 60				5		3	1		1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P	40	7.00. 24	24 12	1 442	10 100		1.000	1158	147	1.2.4	1428	1070	1 020 2	510	000	1.25.1	10.2	11111	 	- 950		55			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ľ		14 281	ELLI C	22.04	COE - 300		LODA	1121	226	£77.	880	1014	2066	1.0.1	000	1.2.0	1011	24.72.52		- 000	2012	7- 557	10/ -1	52	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c $	1	100	12 20 21	<u>66</u>	21 112	10. 40	-	Lana	1265	121	574	824	1.042	2 042 4	100.	200	120		412.47		- 100	- 10 -	1-1-251	2 4 L - 0	25	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c $	4	5	74 BY 26	111 20	224 5	201 27.1		1000	1121	114	565	-154-	3.99	1.995	282	000	160	221	200.94		- 10 B	- 01	1 221	10 161	<u>с</u> –	\$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	8	MAG AL	17 ×	2-1-13/	14 100	-	1000	1.386	195	285	192	2/2	1.916	9.59	200	120		400.57				7- 55	11- 25.1	17 21	53
$ \begin{array}{ c c c c c c c c c c c c c c c c c c $	1		21.23. 15.15	22 23	2 1366	94 100		10001	1.186	144	1431	-195	916	1.916	258	- CDO	62	110	440.24		010		1- 351	1-2-1	- -1	25
	1	381	21 0.2	221 22	LALL L	201 100		1000	1.470	1000	140	1.62	857	1.8.2	828	000	120	140	560.32		020		1.5.2	01- 42.0		Ч
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	140	21 1223	23- 20	2 1 622	201 202		1000	1443	-392-	234	484	190	1.230		+ 40%	021	1.20	2224		2.0	14	1	2 245	1	3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	1	11 13.50	22.24 02	1 1 590	201 100		1400	2054	919	121	510	715	1715	852	88	120	1 071	134.24			-		-		3
	1	00	200 14	20 22	1 000	8		1000	4	1.000	900	906		-+- 		000	140	14	000		0.0	101	252	9	-	9
] (, «				$\left \right $										†		Ť		+-				┼	T	$\frac{1}{1}$	
	Ļ			.							ļ					Η	H									ļ.
E.Organistic E.Organistic E.Organistic 1) • • • • • • • • • • • • • • • • • • •	Ц															-										
$E(0:400.41 \ E(0) \ E(0:400.41 \ E(0) \ E(0:400.41 \ E(0) \ E(0:400.41 \ E(0) \ E(0) \ E(0:400.41 \ E(0) $		Η		Ì										-	-											
	lz Fia	* · ·			50-M-03	N 191	Ō							-					32 GT LLY'S	ሐ						1
		•			· .			i Li i	•	•			•	1	:						<u></u>			• •		
$ (1) challed (1) e attained and wir (1 - write(1)) (1) then (1 - warden) the value is value (2 at a wire value) (2 at 1) (1) the value (1) the value of the value value (1) \frac{1}{2} (1 - \frac{1}{2} $	₽. ∾::		i.	1		•	•	. ×.	L															ł		
(1) the (1 - mains) in value (2 and	3	0	Line on ten	the set	1-3 (H	art of to	•	1						• •		102110						1.4				
(1) we accele how the of the spin much be a spin m	3	÷	-		fin column	. •	• •			ş			• •	- \	100		•	ωs			. J	the define				L.
(1) a, stain (3) is statute of the (1- mature) i (and the (1) · 2.6. 2119.1 · 73.5 · 1. · · · · · · · · · · · · · · · · ·	(2) 	Section 1			1	the shi	<u>s</u> `	•		S (total #	ine tree) -	12(D)-2	X 191624	N. JeAls			2	15		•	ð jar			•	•	
(1) The start of and (1) and (0.10	9	at disc into the	f only the	1 (a - ' con	(1)			inere de	<u>9</u> <u></u>	. 19.09	11	 	70.87		8		12.4.5	- N.1	1	julian (bhi		Ì	1	
(e) mine tam me cime (ben faith vitue of e).	(9)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			1 outy the	(- M	(alda				2	2 40	5 1-			i		3 (B) 14	. 		•	No.		1		
	3 8		Sal al		a field					2 8					1 69.101		5	Ю на	•		, , , , 51 1, , ,			e -	- 	

T-10

FIG. 3

5-23020

ב מק

OTUTI AFRONAUTICS MANUAL

CIVIL AERONAUTICS MANUAL REVISION SHEET NO. 51

05-App I

		and the second	<u></u>	
		Final cla	Final cub	Final c
1	2	3	4	5
<u>y</u> b/2	Cla.	C_ × 2	с ^{ур}	3+4
0	998	1.72	.185	1.905
.0960	1.012	1.74	.182	1.922
1920	1.027	1.77	.155	1.925
2880	1.034	1.78	.107	1.887
3840	1.03.5	1.78	014	1.794
4755	1.033	1.78	068	1.712
.5670	1.021	1.76	115	1.645
.6585	.997	1.71	148	1.562
7500	958	1.65	155	1.495
.8125	928	1.60	-155	1.445
87.50	.895	1.54	155	1.385
9375	.857	1.47	155	1315
1.000	000	000	000	440

EXAMPLE FROM N.A.C.A. T.R. 585 FINAL CL DISTRIBUTION FOR A WING CL of 1.72

FIG. 4

CIVIL AERONAUTICS MANUAL REVISION SHEET NO. 52

FIG. 6 1-13

5-23020

J.

5-23020

FIG. 8

1-15

800 INDEPENDENCE AVE SW DOT LIBRARY. 10A SECTION

5-23020

FIG. 9 I-16